
Specifications

Specifications		
Measuring range	kN	$F_x = -2 2$ $F_y = -2 2$ $F_z = -3 3$
Sensitivity (mV/N)	mV/ N	$F_x = 9M$ $F_y = 6M$ $F_z = 6M$
Natural frequency	Hz	$f_n(x)=1280$ $f_n(y)=921.6$ $f_n(z)=1536$
Operating temperature	°C	0 80
LxWxH	cm	17 x 10 x 6.8
Weight	Kg	5.75
Degree of		IP65 or IP67
protection		
Connection		Waterproof sealed D-sub
Crosstalk	%	3 - 14

Neo-MoMac

Cutting Force Measurement &

Tool Wear Monitoring

Milling Process

Overview

Neo-MoMac is a real time cutting tool wear monitoring system based on cutting force signals in milling process to improve final product quality and reduce the costly maintenance and machine downtime.

Neo-MoMac can also be used as a cutting force measurement system which uses a strain gauge-based dynamometer.

Neo-MoMac consists of a low cost dynamometer, a portable data acquisition device and a smart graphical user interface.

Dynamometer

- Strain gauge-based dynamometer.
- Low-cost dynamometer.
- All stainless steel construction.
- Rugged design.
- 3-axis cutting force measurement.
- Dry and flooded milling.

Data Acquisition

- Low-cost data acquisition device.
- Lightweight and small size.
- Portable.
- > Easy connection.

Milling Process

High reliability.

Software

In house developed software for

real time tool wear prediction and

Utilize signal analysis algorithm of

monitoring.

Data Acquisition

I-kazTM method