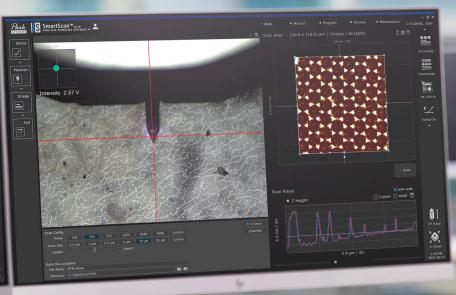
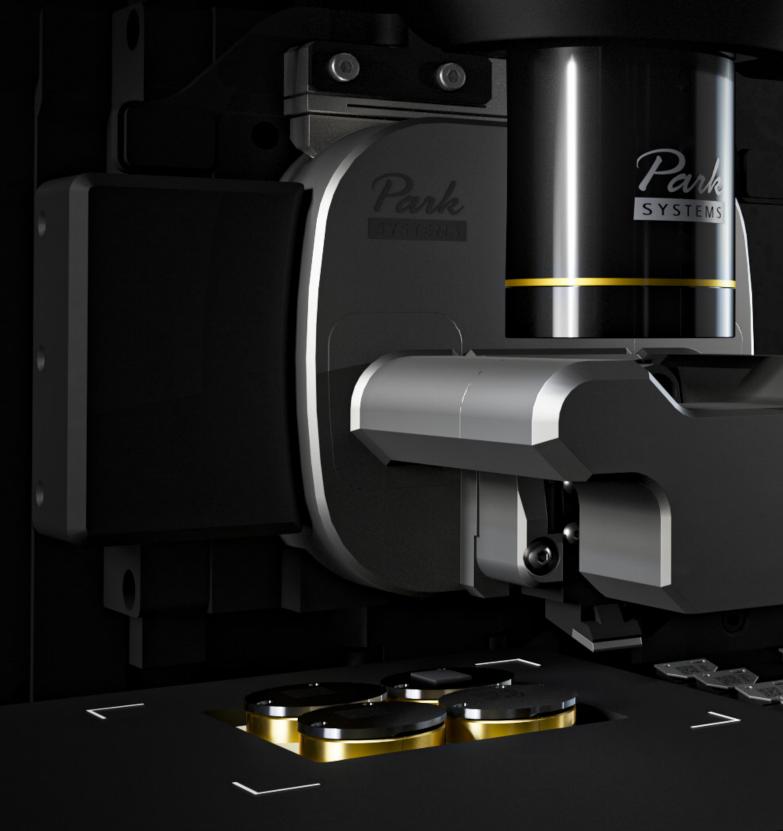
ATOMIC FORCE MICROSCOPE



A New Class of Atomic Force Microscope The Automatic AFM

Park FX40 The Automatic AFM Accelerate Your Research

Get the highest resolution images and most accurate data autonomously, thereby accelerating your research. Unlike others, Park FX40 takes care of everything automatically: from tip pick up to landing to full autonomous scanning of the sample at a click of a button. It does this by infusing robotics, AI and machine learning into its groundbreaking FX system.

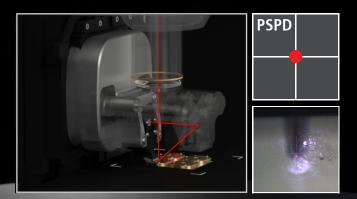

Park FX40

The Automatic AFM

Accelerate Your Research

Sail Through your Research and Development:

- The first dual-camera system ever adopted in research AFM
- Machine learning automation with updatable data

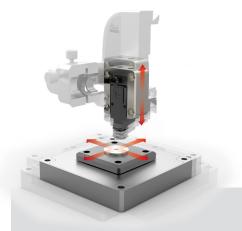


Auto Probe Identification

The Probe Recognition Camera reads the QR code imprinted on the chip carrier of a newly loaded probe and extracts and displays all pertinent information on each of the tips available, including the type, model, application, and usage. This enables you to quickly select the best probe tip for each job.

Auto Probe Exchange

With automated probe exchange, you can now replace old probes easily and safely in full automation. Harnessing the convenience of an 8-probe cassette, along with a magnetic controlled mechanism, the Park FX40 autonomously mounts the probes.

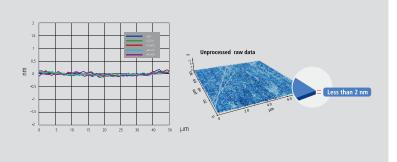

Auto Beam Alignment

Automatic Beam Alignment positions the laser beam onto the proper location of a cantilever and further optimizes the PSPD position both vertically and laterally. It shifts the X,Y and Z axis for clearer images, with no distortion, all autonomously at the click of a button.

Park FX40 The Park AFM Technology

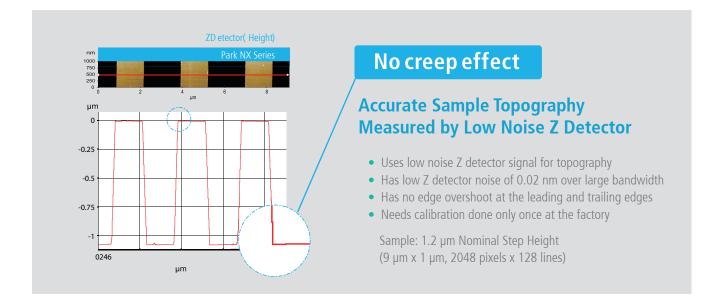
Flat Orthogonal XY Scanning without Scanner Bow

Park's Crosstalk Elimination scanner structure removes scanner bow, allowing flat orthogonal XY scanning regardless of scan location, scan rate, and scan size. It shows no background curvature even on flattest samples, such as an optical flat, and with various scan offsets. This provides you with a very accurate height measurement and precision nanometrology for the most challenging problems in research and engineering.

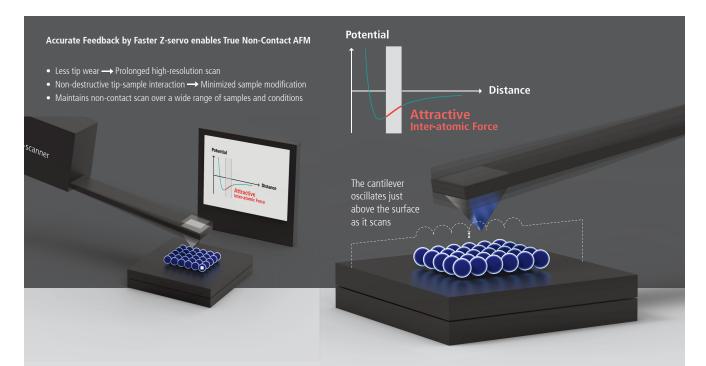


Decoupled XY and Z Scanners

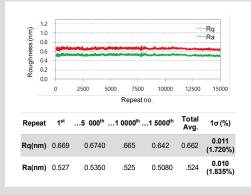
The fundamental difference between Park and its closest competitor is in the scanner architecture. Park's unique flexure based independent XY scanner and Z scanner design allows unmatched data accuracy in nano resolution in the industry.


Accurate Surface Measurement "Flat" sample surface as it is!

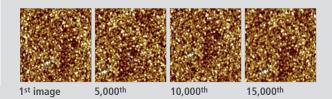
- Low residual bow
- No need for software processing
- Accurate results independent of scan location

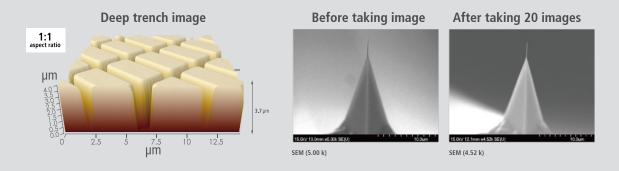

Industry Leading Low Noise Z Detector

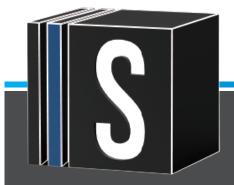
Park AFMs are equipped with the most effective low noise Z detectors in the field, with a noise of 0.02 nm over large bandwidth. This produces highly accurate sample topography and no edge overshoot. Just one of the many ways Park NX10 saves you time and gives you better data.



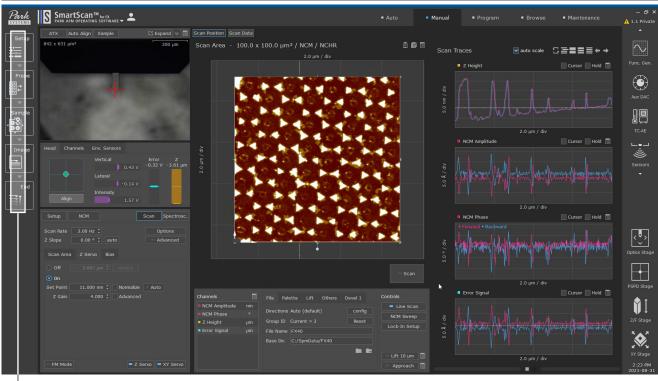
True Non-Contact™ Mode

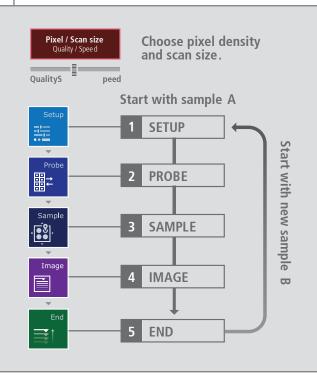

True Non-Contact[™] Mode is a scan mode unique to Park AFM systems that produces high resolution and accurate data by preventing destructive tip-sample interaction during a scan.


Unlike in contact mode, where the tip contacts the sample continuously during a scan, or in tapping mode, where the tip touches the sample periodically, a tip used in non-contact mode does not touch the sample. Because of this,



use of non-contact mode has several key advantages. Scanning at the highest resolution throughout imaging is now possible as the tip's sharpness is maintained. Non-contact mode avoids damaging soft samples as the tip and sample surface avoid direct contact.


Furthermore, non-contact mode senses tip-sample interactions occurring all around the tip. Forces occurring laterally to tip approach to the sample are detected. Therefore, tips used in non-contact mode can avoid crashing into tall structures that may suddenly appear on a sample surface. Contact and tapping modes only detect the force coming from below the tip and are vulnerable to such crashes.



SmartScanTM for FX PARK AFM OPERATING SOFTWARE

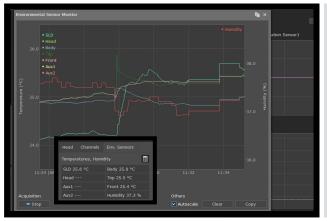
The Most Intelligent Operating Software Park SmartScan for FX

Start to finish with 3 steps of Park SmartScan™

SETUP

Park SmartScan does all your setup including the probe exchange and laser alignment, ready for imaging.

POSITION


Autonomously, it performs the frequency sweep for the cantilever and brings down the Z-stage to the sample. The added sample camera of Park FX40 enables you to navigate effortlessly to the area of your interest for scanning.

IMAGE

The system sets all the necessary parameters for optimum imaging, and starts scanning the sample. It continues to scan until the image is acquired and completed with best result.

Easy Sample Navigation

With the newly added sample camera, you can automatically pair probes to sample locations. The sample camera effortlessly locates the most relevant spot for scanning. Park SmartScan allows you to surf the sample intuitively by controlling the motorized stages through its sample navigation window.

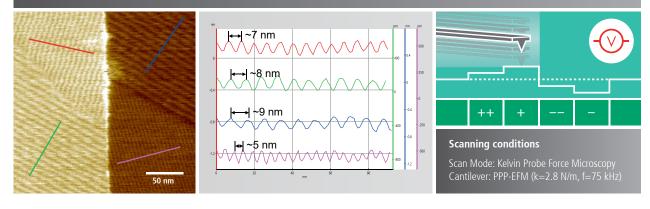
Environmental Sensors for Self-diagnostics

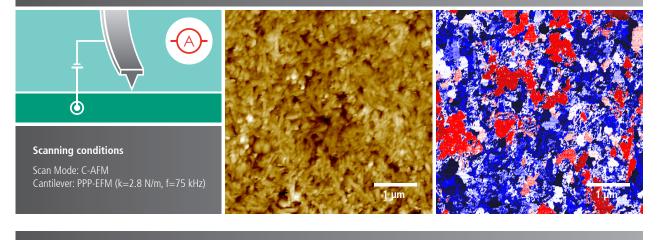
SmartScan displays and stores data from sensors, which measures essential environmental conditions such as temperature, humidity, leveling and vibration. This allows you to compare your scanned images with different environmental channels, providing further environmental indicators for system diagnosis.

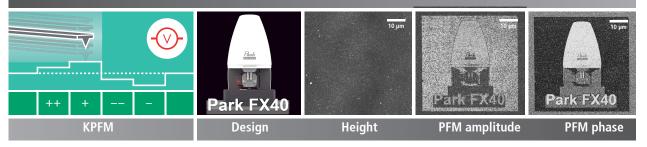
Auto Set-up for Imaging

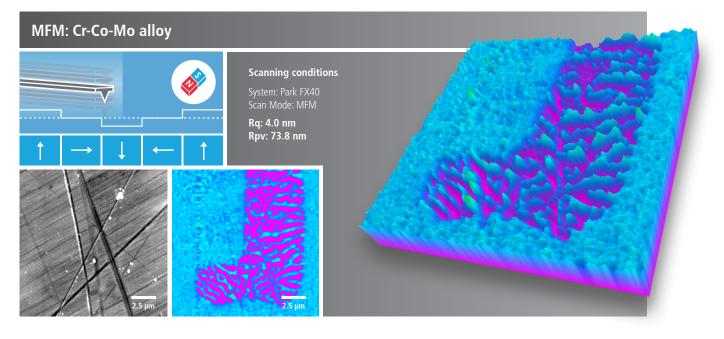
Park FX does all your set up with the simple click of a button, automatically changing and replacing its own tips, to avoid any contamination or user-related errors. Operators are offered tip choices including the type, model, application, and usage.

Park FX40 The Automatic AFM


Accelerate Your Research


Save time. Save energy. Accomplish more! Ask for a demo, and experience the FX difference.


C36H74 on HOPG



Cobalt doped iron oxide

Lithography, PFM, KPFM : PZT thin film

Park FX40 Specifications

XY-scanner		Z-scanner	
Structure	Position detector noise level	Structure	Height noise
- Single-module, parallel-kinematic 2D flexure scanner - Better symmetry than serial-kinematic flexure scanner	- < 0.4 nm (@ 1 kHz bandwidth, rms) - Resolution: 0.1 nm	- Flexure-guided high-force scanner	- < 0.03 nm (@ 0.5 kHz bandwidth, rms) - Resolution: 0.015 nm
XY scan range		Z scan range	
- 100 μm x 100 μm		- 15 μm	

Sample mount

Sample size	Mounting	XY stage travel range	Z stage travel range
- 20 mm x 20 mm (w x d) recommended, thickness up to 20 mm	- Magnetic holder (Max. 4 sample disc) - FX Snap-in Sample Disk for Multi Snap-in Sample Chuck	- 105 mm x 40 mm (Motorized)	- 22 mm (Motorized)

Stage

Visions and optics

Vision path	Objective lens	CCD	Field-of-view
 On-axis sample view from top The same view as an optical microscope 	- 10x (N.A. 0.21) - Resolution: 1 µm	- 5.1 M Pixel - Pixel size: 3.45 μm x 3.45 μm	- 840 μm x 630 μm View with 10x lens

AFM controller	Dimensions	Accessories		
Lock-in amp	AFM body dimension	Probe exchange	Probe mount	
- 4 channel integrated 16 Hz \sim 5 MHz	- 450 mm x 350 mm x 300 mm (W x D x H) Max. dimension of system use inside the acoustic enclosure	 Probe exchanges in less than 1 minutes using Automated Probe Exchange (ATX) (No need to remove head to exchange cantilevers) 	- Pre-aligned mount using chip carrier	

Modes and options

Topography imagingM	agnetic properties	Mechanical propertie	S	
- True Non-Contact™ Mode - Contact Mode - Tapping Mode	- Magnetic Force Microscopy (MFM)	- PinPoint™ Nanomech - Force Modulation Micr - Nanoindentation	anical Mode - Nanolithography oscopy (FMM) - Nanolithography with High V - Nanomanipulation	 Lateral Force Microscopy (LFM) 'oltage* Force Distance (F/d) Spectroscopy Force Volume Imaging
Electrical properties			Dielectric/piezoelectric properties	Thermal properties
 Conductive AFM (C-AFM) IV Spectroscopy Scanning Spreading-Resistan Kelvin Probe Force Microscopy (KPFM) KPFM with High Voltage* Scanning Capacitance Microscop Electrostatic Force Microscop 		tance Microscopy (SSRM) PCM)*	 Piezoresponse Force Microscopy (PFM) PFM with High voltage* Piezoresponse Spectroscopy 	- Scanning Thermal Microscopy (SThM)* * Soon to be available

Committed to Contribute to Impactful Science and Technological Development

Park Systems continues to advance the scope of its products to enhance nanometrology in line with their mission to enable nanoscale advances for scientists and engineers solving the world's most pressing problems. The advanced AFM architecture, the True Non-Contact[™] mode and SmartScan technology embedded in Park Systems's full line of products provides the highest degree of accuracy and advanced automation for today's most demanding nanoscale applications. Research driven product innovations, accelerated at the rapid pace of nanotechnology, are the hallmark of Park's longstanding success with leading academic and industrial customers worldwide. Park Systems is a publicly traded corporation on the Korea Stock Exchange (KOSDAQ) with corporate headquarters in Suwon, South Korea, and regional offices in New York & California USA, Germany, France, UK, China, Japan, Singapore, India, Taiwan and Mexico. To learn more about Park Systems, please visit www.parksystems.com.

Park Systems Enabling Nanoscale Advances

Park Systems Corporate Headquarters: +82-31-546-6800 Park Systems Americas: +1-408-986-1110 Park Systems SE Asia: +65-66347470

Park Systems China: +86-10-6254-4360 Park Systems Europe: +49 (0) 621-490896-50 Park Systems France: +33 (0)-6-0710-8736

Park Systems Japan: +81-3-3219-1001 Park Systems Taiwan: +886-3-5601189 Park Systems UK: +44(0)1157840046

